

Scale-up of Low-Cost Encapsulation Technologies for High Capacity and High Voltage Electrode Powders

David M. King

PneumatiCoat Technologies

Nader Hagh

NEI Corporation

2016 Annual Merit Review Meeting
June 7, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

www.pneumaticoat.com

Project ID: ES239

Overview

Timeline (Phase I & II)

- June 10, 2013
- July 26, 2016
- Phase II is 93% Complete

Budget

- Total SBIR Project Funding
 - 100% by DOE

Barriers

- Poor stability of high energy density materials
- Perceived cost of stabilizing coatings
- Overbuilding requirements to meet cycle life targets

Collaborators

- Nader Hagh, NEI Corp.
- Sung-Jin Cho, NC A&T Univ.
- Fabio Albano, XALT Energy LLC
- Corporate Partnerships

Main Objectives

- ✓ Compare performance of stabilizing approaches: ALD vs. co-precipitation
- ✓ Demonstrate low-cost ALD using an innovative semicontinuous manufacturing approach
- √ Validate economic viability of semi-continuous ALD
- ✓ Develop new ALD coating chemistries for high capacity (HC) and high voltage (HV) materials
- ✓ Construct and validate a 100 kg/shift Particle ALD reactor
- ✓ Demonstrate and down-select new ALD coating chemistries for HV cathodes
- ✓ Implement QA/QC strategy for ALD manufacturing
- ✓ Produce over 400 kg of material for strategic partners
- ✓ Demonstrate < 5% capacity fade over 200 cycles in 2+ Ah pouch and 18650 cells

Phase II Milestones

Milestone # and Description	Milestone Verification Process	Month
M1: Pilot Reactor Installation	Successful system construction and ability to control critical process variables such as pressure, temperature and valve firing in automatic operation	5 Complete
M2: 2Ah Baseline Cells	Successful fabrication of viable 2Ah cells and completion of 200 testing cycles at 1C rates	6 Complete
M3: Pilot Reactor Commissioning	Completed recipe builds for Al ₂ O ₃ and TiO ₂ ALD processes yielding > 80% material collection and < 5% variation in coating content per cycle	11 Complete
M4: Year 1 Report	Successful completion of Tasks 1-1 to 1-8	12 Complete
M5: Final Down- Selection	Successful identification of the coating processes for LNMO and graphite powders providing the greatest value proposition.	18 Complete
M6: Year 2 Report, Phase III	Successful completion of Tasks 2-1 to 2-6	24

Technical and Strategic Approach

Technical and Strategic Approach

Balanced value proposition assessment between gasphase and liquid-phase surface coating techniques: Co-Precipitation (CP) versus ALD

ALD vs. CP for HV and HC Cathode Powders

- Initially, CP coatings (2-4 wt%) maintained high performance, but were not robust and failed during long-term testing
- ❖ ALD coatings (0.1-0.5 wt%) demonstrated robust performance over long-duration cycling for both 5 V LNMO and layered LNMC
 - Decision Point: <u>GO</u> for ALD coatings based on more robust performance and lower materials consumption
 - Optimal ALD thickness and materials down-selected for each

Pouch Cell ALD Performance Validation

2 Ah pouch cells fabricated by XALT Energy using PCT's ALD-enabled NMC-721 and Pristine Graphite

Demonstrated performance: 190 Wh/kg, 430 Wh/L, 1000 cycles at C/3 rate

ALD Production Strategy: Particles vs. Electrodes

- ALD on electrodes requires Roll-to-Roll processing
 - Highest likelihood of success:
 TNO / Holst Centre efforts
 - However precursor waste is 50-70% (Holst)
 - ALD/MLD-coated electrodes benefit from diffusion time, particularly for thick electrodes: "slow" R2R is anticipated, increasing \$/m²

- Process risk: failure would scrap embedded cost of finished electrode
- Still many unanswered questions for large global investment to date
- Customer development efforts suggest value chain is unwilling to bear the high risk of adopting an ALD-coated electrode approach
- ALD on particles requires high-throughput processing
 - Batch Fluidized Bed Reactor ALD: expensive and not scalable
 - Semi-continuous ALD: low-cost, focus of this program
 - Continuous ALD: infeasible due to costs, entrainment losses

Semi-Continuous Particle ALD Validation

Phase I Prototype Scale (3 kg/hr)

- Linear ALD growth with cycles achieved
- Adds residence time as variable
- Minimizes water exposure for sensitive electrode powders
- Low CapEx and utilities costs; 200x throughput over batch systems
- Fully automated using conventional powder handling equipment
- Makes powder flow, not precursor flow, rate determining step

Phase II: Validation of Pilot-Scale Manufacturing

- 200 kg/day 4-ALD cycle system
- Produced > 1,700 kg in prev. 12 mo.
- Linear growth with cycles
- Fully-automated controls
- Currently designing 1 MT/day system for 3Q16 commissioning

Phase II: Validation of Pilot-Scale Manufacturing

- Suitable for coating entire surface area of Liion battery powders, which consist of agglomerates of primary powders
- PCT's alternate process sequence yields better performance than "traditional" ALD process

Alternate ALD Chemistry Development: Li[M]PO₄

ALD-Oxide LNMO/LTO EOL performance: 300 cycles at 55°C

Transitioning to [M]PO₄ and Li[M]PO₄ ALD Processes significantly enhances ALD-enabled LNMO

PneumatiCoat SBIR Program Summary

- ✓ Confirmed ALD delivers highest value proposition of all surface coating techniques
- ✓ Validated scalability of Particle ALD using semi-continuous manufacturing approach
 - ✓ Pilot-scale system capable of 200 kg/day
 - ✓ Light-commercial scale systems under design
 - ✓ Fewer unanswered questions vs. ALD electrode coating
- ✓ Developed ALD processes for fluorides, phosphates, Licontaining coatings, and others
 - ✓ No-Go for fluorides: hygroscopic, waned commercial interest
 - ✓ Li-containing coatings provide 20% reduction in 1st cycle ICL
- ✓ Issued Patent: US 8,993,051 for ALD-enabled battery materials
- ✓ Issued Patent: US 9,284,643 for High Throughput ALD Apparatus

